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The mechanism of gear meshing entails a large amount of sliding between the mating teeth
in contact. Friction forces act orthogonal to the line of action, and the resulting dynamic
force and moment are governed by a number of parameters, such as the relative surface
speed, instantaneous load and spatial location of the point of contact. Sliding resistance is
inherently non-linear in nature, and due to the additional presence of periodic meshing
properties like sti!ness and viscous damping, dynamic interactions result between friction
and system parameters. This combination leads to a non-linear time-varying (NLTV) system
comprising implicit non-linear di!erential equations. Nevertheless, most researchers have
treated friction as a linear time-varying (LTV) phenomenon. In this article, both of these
models are critically analyzed. For the LTV system, the harmonic balance formulation is
developed to predict the dynamic behavior and sub-harmonic instabilities in the system. The
NLTV analysis leads to very complex and intractable equations, and hence numerical
methods are applied. Using this analysis, the physical phenomena associated with the two
models are compared and the essential di!erences in the system behavior are examined.
Finally, the dynamic e!ects of friction-induced non-linearity are investigated and the critical
parameters are identi"ed.

( 2001 Academic Press
1. INTRODUCTION

During the gear meshing action, the gear and the pinion momentarily undergo a pure
rolling action as the zone of contact coincides with the pitch point. In all other positions,
however, the meshing action is a combination of rolling and sliding. Since rolling resistance
is considerably smaller than the sliding resistance [1, 2], its contribution to the total
tooth friction is usually ignored. Unlike the total rolling speed of the gears, the relative
sliding velocity varies with the meshing position as well as from one tooth to the
other. A mean instantaneous sliding speed for each tooth pair in contact can be derived
from meshing kinematics. However, the true value of the sliding velocity will also include
a component from the oscillating torsional motion of the gear and pinion. This dependency
upon the instantaneous vibratory velocity introduces an implicit non-linearity in the
gear dynamic system, which assumes the form of a non-linear time-varying (NLTV)
system.

Typically, the operating regime of the gears must be characterized by many simultaneous
dynamic phenomena, such as periodically varying meshing sti!ness and damping, multiple
excitations and sliding resistance between the mating gear teeth in contact. Consequently,
gears functioning under sliding friction may exhibit sub-harmonic response, multiple
solutions, super-harmonic resonance, modulation and dynamic instabilities. For analysis of
friction e!ects in a gear mesh, some researchers have applied a linear time-varying (LTV)
0022-460X/01/490671#24 $35.00/0 ( 2001 Academic Press
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model for estimating the coe$cient of friction [2}7]. Alternatively, equivalent linear viscous
damping has been proposed as a substitution for the energy losses ensuing from friction
[4, 8]. Clearly, both these methods have limitations and certain non-linear dynamic
phenomena such as sub-harmonic response may not be detected. In the absence of friction,
other non-linearities, most notably those due to tooth backlash, have been thoroughly
investigated by several authors [8}15]. The problem of friction at the tooth contact is
di!erent from classical friction oscillators in that the direction of sliding resistance is not the
same as the primary motion direction or degree of freedom. Hence the conventional
knowledge of friction oscillators [16] may not be applicable in this study.

In a gear mesh, sliding friction can a!ect the system dynamics in four distinct ways,
namely as an external excitation, as a periodic system parameter, as a non-linear coupling
agent and as a source of energy dissipation. In its simplest form, sliding friction can be
modelled as an external excitation with the same fundamental period as the gear meshing
cycle. This method has been studied extensively by several researchers [2, 3, 5, 6] using
di!erent dynamic models. If the sliding mechanism is formulated in a more intricate manner
such as based on the dynamic mesh force [2, 7], then the friction term appears on the
left-hand side of the equation and thus it participates as a time-varying parameter in the
system. Thirdly, due to the dependence of friction on the instantaneous sliding velocity, an
implicit non-linearity occurs, which introduces dynamic coupling between system
parameters and sliding mechanism [4]. Finally, sliding resistance can in#uence the system
with its damping characteristics, as discussed by Iida et al. [4] and Velex and Cahouet [2].
This paper describes a new methodology to examine these issues, using a simpli"ed model
of a spur gear pair operating under sliding friction at the tooth interface. In particular, the
dynamic model is used to examine the e!ects of friction non-linearities in the system in the
presence of time-varying mesh parameters.

2. SCOPE AND OBJECTIVES

In the current article, the spur gear pair is modelled as a two-d.o.f. torsional system, as
shown in Figure 1. The gear teeth deform as a result of Hertzian stress as well as the
cantilever bending of the teeth [17], and the corresponding mesh sti!ness is represented by
k(t). Surface pro"les of the teeth exhibit deviations from the perfect involute shape, either
due to manufacturing errors or deliberate modi"cations. This non-conjugacy of the tooth
pro"les acts as a displacement excitation at the mesh, referred to as the unloaded static
transmission error e (t). Additionally, external torques ¹

p
and ¹g act on the pinion and the

gear respectively. The mean angular speeds of the pinion and gear are )
p

and )g, whereas
h
p
and hg represent the angular displacement from the mean position. In general, the surface

velocities of the gear and pinion are unequal at the tooth interface, resulting in a relative
sliding velocity and a friction resistance acting at the contact zone.

For most practical designs of spur gears, the pro"le contact ratio C varies between 1)0
and 2)0. This implies that two teeth are in contact for (C!1) fraction of total time, and
a single tooth transmits the torque during the rest of the mesh cycle. In this study, the
beginning of the mesh cycle at t"0 is de"ned to be coincident with the initiation of
contact for the second tooth. As the gears roll, the "rst tooth leaves contact and there
is a sudden reduction in the meshing sti!ness k(t) of the system. At this instant t

a
, the load

on the second tooth is doubled, since the load is assumed to be distributed equally
amongst all the teeth in contact. The second critical point occurs at t

b
when the zone of

contact passes through the pitch point, and the direction of the sliding velocity for tooth
2 reverses. Note that the order in which t

a
and t

b
occur is dependent on the speci"c gear



Figure 1. Dynamic model of a gear pair operating with sliding friction.
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geometry. Finally, the third gear tooth comes into engagement at t
c
and this constitutes one

gear mesh cycle.
In this article, the gear mesh is modelled as both a linear (LTV) and a non-linear

time-varying (NLTV) system. First, friction is included as an LTV parameter and the
harmonic balance method (HBM) is applied to analyze the dynamic response. Then, an
analytical model is presented which incorporates the non-linearities due to the friction
phenomenon. Subsequently, numerical techniques are applied to estimate the response of
the system under miscellaneous conditions. Parametric studies are carried out to
demonstrate the signi"cance of friction in the overall dynamic response and stability of the
system. The speci"c objectives of this paper are to: (1) develop a non-linear gear dynamic
model incorporating sliding friction, (2) study e!ects of non-linearities on dynamic behavior
of a spur gear pair, (3) compare LTV and NLTV models, (4) construct semi-analytical
solutions for friction mechanism using HBM, (5) examine system stability issues, and (6)
compare non-linear friction and equivalent viscous damping models.

In order to accentuate the non-linear and parametric e!ects of sliding at the teeth,
a simpli"ed model is developed with several underlying assumptions. Only the torsional
motion of the gears is considered, which assumes that all mountings are rigid and
auxiliary components such as the driving inertias and shafts are ignored. Mesh sti!ness is
assumed to follow a simpli"ed periodic variation in the form of rectangular pulses. The
coe$cient of friction, while considered to be an idealized function of the surface sliding
speed, is modelled to be independent of other operating conditions. Furthermore, the
normal contact load is assumed to be equally distributed amongst all the teeth in contact,
under both static and dynamic conditions. For this gear pair, other non-linearities such
as the ones arising due to tooth backlash and spatial domain dependency of mesh sti!ness
are neglected.
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3. TRIBOLOGICAL CONSIDERATIONS

Sliding on the gear tooth surface causes a frictional force F
f

along the o!-line of action
direction, which is designated as the g-axis. As the gears roll, the tooth interface point moves
along the contact line or the line of action (m direction). These linearly varying values of m

p
(t)

and mg(t) result in a time-varying torque ¹
f

about the two gear axes, which will also depend
upon the coe$cient of friction and the normal load. Till this instant t

a
, the sliding velocity

<
s
on the two pairs of teeth is opposite in direction, and consequently, so is the friction force

F
f
. During the period, the net force in the g direction is zero; however, ¹

f
O0 due to the

spacing between the gear teeth and hence the di!erent points of application of these two
friction forces. Subsequently, the directions of friction force as well as the torque reverse at
the pitch point for each tooth.

Under typical running conditions, the gears operate in a regime of mixed lubrication
[18, 19], characterized by partial asperity contact and a #uid "lm formation. The coe$cient
of friction k is a complex function of many tribological parameters, as given by
k"f (<

S
, N, <

R
, ¹, R

q2
), where <

S
and <

R
are the sliding and rolling velocities respectively,

N is the normal load at the tooth contact zone, ¹ is the temperature and R
q

is the
compound surface roughness of the contact surfaces. For instance, one of the commonly
used equations for estimating k in a gear mesh was proposed by Kelley and Lemanski [18] as

k"C
1

1

1!C
3
R

q

log
10 C

C
2
w

g
0
<
S
<2
t
(o

p
#og)2D . (1)

Here, C
1
, C

2
and C

3
are empirical coe$cients that depend upon the applied units, o

p
and

og are the local radii of curvature of pinion and gear respectively, w is the load distribution
per unit length and g

0
is the dynamic viscosity of the lubricant. Equation (1) predicts

a considerable variation in the value of k during a complete mesh cycle. Nevertheless, recent
studies [2, 19] have established that during one meshing cycle, changes in the magnitude of
the coe$cient of friction are less signi"cant when compared with the e!ect of the reversal of
sign at the pitch point. Hence, the exact variation of k may be ignored for simplicity and it
can be represented by the Coulomb model. For each tooth pair i in contact

k
i
"k

0
sgn (<

S,i
) (2)

where

sgn(<)"G
#1, <'0,

0, <"0,

!1, <(0.

Here<
s
is the relative sliding velocity between the two mating surfaces for any given pair

of teeth and k
0

is the coe$cient of friction for the interface, which is a material property of
contacting surfaces. An alternative, yet analytical, representation using a trigonometric
function is proposed below, so that the discontinuity at the pitch point is avoided.

k
i
"

2

n
k
0

tan~1 (<
S, i

/<
0
). (3)

In equation (3), <
0

is introduced as a reference velocity used for non-dimensionalization
of sliding speed. Additionally, it controls the degree of non-linearity near the pitch point,
when the sign of <

S
reverses. The lower the value of <

0
, the higher is the slope of the



GEAR FRICTION NON-LINEARITY 675
trigonometric function and hence the function tends towards a closer approximation to the
Signum function given by equation (2). For gear applications, which have combined
rolling}sliding conditions, the rolling velocity <

R
can be a logical choice for the value of

<
0

in equation (3).

4. LINEAR TIME-VARYING SYSTEM MODEL

Previous analytical studies [2}7] have considered the friction between gear teeth as
a time-varying function, such that the sliding velocity is determined solely from the
kinematic considerations. This assumption has been found to be valid under non-resonant
conditions, when the vibratory component of angular velocity of the gears is much smaller
as compared to the mean angular rotational speed. Furthermore, all meshing parameters
such as sti!ness, damping and moment arm m are also assumed to be explicit functions of
time. Table 1 shows the representative design for a gear pair example studied in this paper.
The assumed idealized variations in these parameters within a mesh cycle are shown in
Figure 2.

A problem thus de"ned assumes the form of a linear time-varying system and the
equations of torsional motion can be written as follows (subscripts p and g stand for the
pinion and gear respectively):

J
p
ĥ
p
#c(t) (hQ

p
R

p
!hQ gRg!eR )R

p
#k(t) (h

p
(t)R

p
!hg (t)Rg!e(t))R

p

"¹
p
#+

i

k
i
(t)N

i
(t)m

i
(t), (4)

Jgh$ g#c (t) (hQ gRg!hQ
p
R

p
#eR )Rg#k(t) (hg (t)Rg!h

p
(t)R

p
#e (t))Rg

"!¹g!+
j

k
j
(t)N

j
(t)m

j
(t). (5)

Here J is the moment of inertia, R is the base radius of the corresponding gear, e is the
unloaded static transmission error and i and j are the indices of the particular teeth in
contact. In this form, equations (4) and (5) constitute a semi-de"nite system, and these can
be reduced to a single equation by de"ning the dynamic transmission error (DTE) as
d(t)"R

p
h
p
(t)!Rghg(t):

J
p
Jgd$#c(t) (dQ !eR ) (R2

p
Jg#R2gJp

)#k(t) (d(t)!e(t)) (R2
p
Jg#R2g Jp

)

"(¹
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R
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Jg#¹gRgJp

)#JgRp
+
i

k
i
(t)N

i
(t)m

i
(t)#J

p
Rg +

j

k
j
(t)N

j
(t)m

j
(t). (6)
TABLE 1

Gear design parameters and critical time instant values for one mesh cycle

Number of teeth P
p
, Pg 25, 31 Input torque ¹

p
226 Nm

Center distance 88)9 mm k
mean

(N/m) 5)68e8
Pro"le contact ratio C 1)433 k

max
(N/m) 7)20e8

Input speed X
p

1500 rpm k
max

/k
min

1)667

Lowest point of single tooth contact (t
a
) 0)693 ms

Pitch point (t
b
) 1)148 ms

Highest point of single tooth contact (t
c
) 1)600 ms



Figure 2. Assumed periodic meshing parameters during one meshing cycle: **, 1st tooth; - - - , 2nd tooth.
(a) Load distribution function N(t); (b) total mesh sti!ness k(t); (c) coe$cient of the friction k, and (d) friction
torque ¹

F
(t).
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Furthermore, the normal force at the gear teeth can be de"ned either on the basis of
a load distribution under quasi-static conditions, or that due to the actual tooth load under
dynamic conditions. These two cases have been analyzed by the authors in an earlier paper
[7] using Floquet theory. It was shown that the application of dynamic tooth load has only
a marginal e!ect on the dynamic response.

5. SEMI-ANALYTICAL MODEL FOR THE LTV SYSTEM

5.1. PROBLEM FORMULATION

The multi-term harmonic balance method (HBM) is "rst applied to this problem for the
case with quasi-static load distribution, since this method could be extended to non-linear
systems. Equation (6) can be written as

J
e

J
b

d$#c(t) (dQ !eR )#k(t) (d(t)!e (t))

"

¹
eq

J
b

#

JgRp
J
b

+
i

k
i
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i
(t)m

i
(t)#

J
p
Rg

J
b

+
j

k
j
(t)N

j
(t)m

j
(t) . (7)

Here, the following equivalent factors have been used:

¹
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Rg¹g , J

b
"JgR2
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#J

p
R2

g
, J

e
"J

p
Jg . (8a}c)
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Using equations (7) and (8), the viscous damping ratio f can be de"ned as

f"
c

2S
J
b

kJ
e

. (9)

The solution is assumed to contain the "rst three harmonics (u
0
, 2u

0
and 3u

0
) of the

tooth meshing frequency u
0
:

d
h
(t)"ad0#

nh
+
i/1

adi cos (iu
0
t)#

nh
+
i/1

bdi sin (iu
0
t). (10)

Additionally, the "rst and third super-harmonics of the "rst sub-harmonic term (i.e.,
0)5u

0
and 1)5u

0
) are also included. Thus, the sub-harmonic component of the dynamic

transmission error d
u
(t) and the total transmission error d(t) can be expressed as

d
u
(t)"

nu
+
i/1

cdi cos ((i!0)5)u
0
t)#

nu
+
i/1

ddi sin ((i!0)5)u
0
t), (11)

d(t)"d
h
(t)#d

u
(t). (12)

Each of the time-varying parameters, namely sti!ness, damping, coe$cient of friction and
static unloaded transmission error is also expanded by Fourier series up to three harmonic
terms. For example, the Fourier coe$cients of sti!ness are shown in equation (13). The
Fourier expansion for viscous damping terms will be similar to these since damping is
assumed to follow the same form of variation:
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For the friction expression, all terms with the combined product k(t)N(t)m(t) are collected
and their Fourier coe$cients are given by equation (14). The transmission error e (t) is
assumed to be already in the form of a summation of sine series. Note that all of these terms
have the same periodicity of one tooth meshing cycle
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where D
1
}D

5
are given as follows; ¸

c
represents the length of the line of action of the gear

pair, a is the roll angle of the pinion and a
m

is the angular pitch of the pinion.
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5.2. SOLUTIONS FROM THE HARMONIC BALANCE METHOD

To "nd the solution, expressions in equations (13)}(15) are substituted into equations
(10)}(12). Then after balancing the terms corresponding to the "rst three harmonics in the
governing equation (7), the following matrix relationship is obtained.

[K
h
(u)D G

ad0
ad1
ad2
ad3
bd1
bd2
bd3
H"MF(u)N. (16)

Here, K
h
(u) is a 7]7 matrix consisting of sti!ness and damping terms. Similarly, F(u) is

the equivalent force vector comprising pro"le errors, external load and friction terms.



TABLE 2

Fourier coe.cients of parameters in the gear mesh system for baseline values

Sti!ness
k (MN/m)

Viscous
damping
c (Ns/m)

Pro"le error
e (km)

Friction term
(N)

Mesh harmonic a
k

b
k

a
c

b
c

a
e

b
e

a
f

b
f

0th (mean) 556)7 518)2 0 !12)9
1st 37)4 175 17)4 81)5 0)356 1)75 !223 34)3
2nd !34)1 15)2 !15)9 7)08 0)063 !0)048 70)7 164
3rd 29)1 39)9 13)5 18)6 0)077 0)123 20)5 !15)2

Figure 3. Comparison of semi-analytical and numerical solutions for LTV gear system: ], simulation; **,
HBM. (a) First harmonic of gear mesh frequency; (b) second harmonic; (c) third harmonic.
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Equation (16) can now be applied in order to solve for the coe$cients of the dynamic
transmission error terms by computing the inverse of the K

h
(u) matrix at any frequency u.

The term ad0 appears as the mean de#ection due to the external time-variant torque.
Equations (17) and (18) show the "rst row of the equation in its expanded form. Here, a and
b represent the cosine and sine coe$cients of Fourier series expansion. Subscripts k, c, e and
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f stand for sti!ness, viscous damping, pro"le error and friction, respectively, and the
numerical subscripts 0}3 indicate the order of the fundamental mesh harmonic. Typical
values of these coe$cients are listed in Table 2.
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(18)

Figure 3 presents the magnitude DdD"Ja2di#b2di at the "rst three harmonics as a function
of the excitation frequency ( f

0
"u

0
/2n) for the gear design and operating conditions

described in Table 1. The natural frequency of the system is 5)6 kHz corresponding to the
largest peak in the response function in Figure 3(a). The peaks at 2)8 and 1)9 kHz represent
the "rst and the second super-harmonic response. These results are compared with the
values obtained from numerical integration. There is a good match for the "rst harmonic,
but the errors grow for higher harmonics. Hence the harmonic balance method can be
applied to predict the dynamic response of LTV gear systems under the in#uence of friction,
but the accuracy of predictions would depend upon the number of frequency terms
considered in the solution.

5.3. ANALYSIS OF SUB-HARMONIC RESPONSE

Next, the sub-harmonic response is considered by gathering the terms corresponding to
0)5u

0
(subscript 1) and 1)5u

0
(subscript 2). In equation (19), c and d represent the cosine and

sine terms respectively. There is no external excitation at these frequencies, hence the
right-hand side of equations is simply a null vector.
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The various terms in the matrix K
u

are as follows:
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For this homogenous set of equations to have a non-trivial solution, the matrix K
u
must

be singular. Such points correspond to period-doubling instability [11, 20}22] and will
be found by computing the determinant of K

u
as a function of excitation frequency.

Figure 4 shows the plot of det(K
u
) for four di!erent values of the damping ratio f. The points

of intersection with the abscissa indicate the onset of instability. Thus, the "rst period
doubling will occur when f is less than 0)05, whereas the period doubling of the third
harmonic occurs for damping values less than 0)01. Figure 5 shows the actual system
response for values chosen from these graphs, as well as di!erent damping values.

Figure 5(a) shows the frequency spectrum of the dynamic transmission error d when the
excitation frequency lies near the second sub-harmonic of the gear system, i.e., u

0
+2u

n
/3,

resulting in an unstable response with strong sub-harmonics. A minor shift in excitation
frequency results in a stable response with no sub-harmonics, as shown in Figure 5(b).
Similarly, Figure 5(c) and 5(d) shows the in#uence of damping on the system at the "rst
sub-harmonic, where u

0
+2u

n
. These graphs show that a change in damping ratio from

0)01 to 0)05 can a!ect the stability of the system signi"cantly.

5.4. EFFECTS OF KEY PARAMETERS

The method of harmonic balance can be applied to conduct a parametric study of the
gear system. Figure 6(a) shows the system response for the baseline conditions, as given in
Figure 4. Determinant of matrix K
u
as a function of gear mesh excitation frequency f

0
:**, f"0; ) ) ) ) , f"0)01;

- - - , f"0)05; ) } ) } ) }, f"0)1.



Figure 5. System response in terms of DTE for di!erent values of damping and excitation frequencies:
(a) f

0
"3)65 kHz, strong sub-harmonic zone; (b) f

0
"3)8 kHz, no sub-harmonic response; (c) f

0
"11)0 kHz,

f"0)01, unstable sub-harmonic response; (d) f
0
"11)0 kHz, f"0)05, weak sub-harmonic response.
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Table 1 with k"0)1 and f"0)01. Figure 6(b) shows the response for the frictionless case,
i.e., when k"0. The di!erence between Figure 6(a) and 6(b) represents the contribution of
friction to the total dynamic response. Note that the peaks corresponding to 2)8 kHz
(second harmonic) have been a!ected the most. In Figure 6(c), the unloaded static
transmission error e is neglected and the dynamic response now jumps up since the pro"le
modi"cations are designed to partly nullify the parametric variations in sti!ness.

Finally, the contact ratio C is modi"ed (Figure 6(d)) which leads to a change in mean
sti!ness according to the relationship

k
mean

"Sk(t)T
t
"

1

t
c
P

tc

0

k(t) dt"k
max

(C!1)#k
min

(!C#2). (21)

Accordingly, the resonance peaks shift towards the right-hand side of the graph with
increasing values of C. With this analysis, the e!ect of various individual excitations and
parameters can be isolated, and their dynamic interactions can be studied. Furthermore, the
harmonic balance method can be used to predict the sub-harmonic instabilities in the gear
system.



Figure 6. E!ects of critical parameters on dynamic transmission error using HBM analysis:**, 1st harmonic
of gear mesh frequency f

0
; - - - , 2nd harmonic; ) ) ) ), 3rd harmonic. (a) Baseline values from Table 1; (b) k"0; (c)

e"0; (d) C"1)4924.
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6. THE NON-LINEAR TIME-VARYING FORMULATION

6.1. INCIDENCE OF FRICTION NON-LINEARITY

In the preceding sections, the gear pair was analyzed with an LTV model of sliding
friction, such that k is an explicit function of time. Clearly, friction modelled in this manner
has the primary e!ect of an external excitation, and would not accommodate the dissipative
property of sliding resistance. In order to incorporate this aspect, the total instantaneous
sliding velocity must be considered. This velocity would include the quasi-static value of
angular speed as well as the vibratory component. When modelled in this manner, the
friction mechanism exhibits an implicit non-linearity, where the resistive force is a function
of the instantaneous surface velocity, which in turn is a system response variable. The
coe$cient of friction k will now be determined by

k (t, hQ
p
, hQ g)"sgn (<

S
)"sgn [mg (t) (Xg#hQ g(t))!m

p
(t) (X

p
#hQ

p
(t))]. (22)

Equation (22) cannot be written explicitly in terms of a single variable d. In order to
completely de"ne this system, at least two independent variables must be chosen from h

p
,

hg and d. This is contrary to LTV systems where the two equations reduce to a single
equation with only one unknown parameter, as shown in equation (6). However, the system
is still semi-de"nite and a stable solution for h

p
or hg may not be obtained. To resolve this



Figure 7. Sliding velocity variation for di!erent modelling considerations: (a) under quasi-static conditions;
(b) dynamic LTV model; (c) dynamic NLTV model with k

0
"0)1 **, 1st tooth; - - -, 2nd tooth.
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con#ict, two alternative methods are suggested. In the "rst approach, one of the gears is
"xed to the base via a torsional spring, thus making the system positive de"nite. This also
leads to a system consistent with the energy conservation principle [15, 19]. In the second
method, which may only be applied in numerical simulation, the equations are solved for
the two angular displacement parameters h

p
and hg . Then a high-pass high-order digital

"lter may be applied to both the parameters, so that the displacement and velocity
corresponding to the rigid body motion are disregarded. This dynamic component of the
velocity is then used in equation (22) for calculating the coe$cient of friction.

The di!erence between LTV and NLTV considerations can be seen from the
corresponding plots of sliding velocity <

s
within a mesh cycle. The relevant equations of

motion are similar to equations (4) and (5), except that k is now also a function of the
instantaneous angular velocities, in addition to being a time-varying parameter.
Figure 7 shows the result for <

s
for the two teeth in contact under three di!erent

circumstances. In Figure 7(a), <
s
is calculated using only the mean angular velocities X

p
and

Xg and the linearly varying distance m
p

and mg. Consequently, the variation in <
s
shows

straight lines with constant slope. The zero crossing point indicates the contact zone passing
through the pitch point, where pure rolling occurs. Also note that although two teeth are in
contact for a certain period, only one tooth passes through the <

s
"0 point. Figure 7(b)

shows the dynamic variation in <
s
, when the LTV model is used. Due to vibratory

oscillations, there are multiple occurrences of pitch point crossing within a mesh cycle.
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Furthermore, even tooth 2 goes through the point of <
s
"0. In the non-linear model, each

zero crossing on the <
s
plot is associated with the reversal in the sign of friction force, and

hence it will impart signi"cant energy dissipation to the system. Consequently, the
magnitude of vibrations is considerably reduced for this regime, as seen in Figure 7(c).

6.2. SOLUTION METHODOLOGY

For the problem thus formulated in a non-linear time-varying form, analytical solutions
are mostly precluded by the complexity of the equations, in particular due to the terms
comprising friction elements. Blankenship and Singh [8] assumed that for a non-linear gear
pair, the stability can largely be determined by the response at the "rst harmonic of the
excitation frequency. Such a hypothesis clearly does not hold when a signi"cant periodic
variation is also present. Consequently, a higher order multi-term harmonic balance must
be employed. For this, one may proceed in the following manner. De"ne the friction torque
¹
f

and k as

¹
f,i

(t, hQ
p
, hQ g )"k

i
(t, hQ

p
, hQ g )mp,i (t)N*

(t), (23)

k
i
(t, hQ

p
, hQ g)"sgn A

<
s,i
<
R
B"sgn C

m
g,i

(t) (Xg#hQ g)!m
p,i

(t) (X
p
#hQ

p
)

<
R

D . (24)

Furthermore, parameters m and h are periodic within a meshing cycle and hence can be
represented by their Fourier components. Thus, the expression for the friction torque
becomes

¹
f
(t)"sgn

A
nmg

+
m/0

a8 mg,m
e+umtB AXg#

nhg

+
m/0

a8 hg,m
jmue+umtB

!A
nmp
+

m/0

a8 mp,me+umtBAXp
#

nhp
+

m/0

a8 hp,m jmue+umtB

]C
nmp
+

m/0

a8 mp,me+umtD C
nN
+

m/0

a8
N,m

e+umtD . (25)

Here, n is the number of terms considered in Fourier expansion and aJ is the
complex-valued Fourier amplitude for the corresponding parameter. Furthermore, the
signum function can be expressed in its Fourier form as follows [23]:

sgn (x)"
4

n C
nk
+

m/0

sin (2m#1)x

2m#1 D . (26)

This will lead to "fth order products in the multiharmonic terms, whose numbers will
further multiply when sub-harmonic response is also considered. Additionally, the
non-linear system comprises two simultaneous equations and the number of terms will
increase accordingly. For example, if n harmonic terms are considered in the solution, then
the number of terms in the expanded equation is approximately 100(2n#1)7. Thus, even if
a single harmonic is considered, there will be O(105) terms in the expression. Such a complex
formulation is obviously intractable for the application of harmonic balance method.
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6.3. DYNAMIC RESPONSE

Due to the complexities in analytical methods, the discussion of non-linear e!ects of
friction is largely con"ned to solutions obtained using numerical integrations. In the current
methodology, the two non-linear equations are solved simultaneously. For computing the
instantaneous coe$cient of friction, the angular velocities of pinion and gear are digitally
"ltered to obtain only the dynamic component. For the gear system described in Table 1,
numerical simulation is carried out at very low rotational speed. Three di!erent cases are
analyzed and the results are shown in Figure 8 in terms of the dynamic transmission error d.

First, the response is computed for the gear pair with no sliding friction at the teeth.
Figure 8(a) distinctly shows the regions of mesh sti!ness variations, but the pitch point on
the gear tooth is indistinguishable due to the absence of friction. At each transition in the
number of teeth in contact, there is an impulse-like excitation due to the sudden change in
sti!ness. Note that this is the result of the assumed k(t) pro"le, as shown in Figure 2. Next,
friction is included as an LTV parameter and now an additional excitation can be observed
at the pitch point, as shown in Figure 8(b). Since a pseudo-Coulomb model of friction is
used, the pitch point also undergoes an impulsive force, although with a somewhat smaller
amplitude. When the same system is analyzed with non-linearities (Figure 8(c)), the
oscillations at the pitch point result in multiple occurrences of reversal of sliding velocity
direction at the pitch point, and the vibrations are dampened signi"cantly. However, the
rest of the graph largely remains una!ected. From these simulations, two important issues
emerge; "rst, although non-linear e!ects in friction seem to have only a local in#uence in the
Figure 8. Dynamic response for the three friction models in terms of d, X"200 rpm, f"0)05: (a) LTV system
with k

0
"0; (b) LTV system with k

0
"0)1; (c) NLTV system with k

0
"0)1.



Figure 9. Contribution of friction to the overall dynamic response d(t) for a non-linear system, at X"2000 rpm
and f"0)05: (a) time-domain response for combined excitation; (b) frequency spectrum for combined excitation;
(c) time-domain response only due to friction excitation; (d) frequency spectrum only due to friction excitation.
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time-domain, this situation may change near resonance conditions. Secondly, the
positioning of the pitch point to the transition point is critical for determining the e!ects of
friction on response. If the pitch point occurs immediately after the transition point, we can
see that the damping e!ect in that case will be maximum.

Using the non-linear model developed, the in#uence of friction parameter is studied for
a typical set of operating conditions. Figure 9(a) and 9(b) shows the time and frequency
responses of the total system, and includes the parametric excitation, friction and input due
to pro"le errors. In Figure 9(c) and 9(d), the pro"le errors are assumed to be zero and the
time-varying mesh sti!ness is replaced by its mean component. Thus, frictional torque is the
only external excitation for this system. From this "gure, it is apparent that as an excitation,
friction is not a signi"cant contributor to the whole system. However, the frequency
spectrum shows that at some frequencies, especially for higher harmonics, its e!ect may be
more apparent. This situation is highly dependent on the operating conditions though.

7. STABILITY ANALYSIS FOR THE NLTV SYSTEM

7.1. SLIDING FRICTION VERSUS VISCOUS DAMPING

Another characteristic of friction is the energy loss, which has led some researchers to
treat the sliding resistance as an equivalent viscous damping element [4, 8]. To "nd such



Figure 10. Contour plot of dynamic transmission error.
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a relationship, the dynamic response is computed near resonance under three conditions: (1)
with friction and no damping, (2) with damping and no friction, and (3) a combination of
sliding friction and viscous damping. Figure 10 shows the contour plots for a given dynamic
transmission error d, where the damping ratio f is plotted along the abscissa and the
ordinate represents the coe$cient of friction. Each iso-amplitude curve represents the
combination of k and f that results in the same peak-to-peak dynamic transmission error.
The negative sloping lines show an approximately linear relationship between the two
parameters, i.e., a

1
k#a

2
f#a

3
"0. The equivalent value of f is somewhat small, which

implies that the sliding friction has a rather weak in#uence as a viscous damping parameter.
One possible explanation for this could be that the friction non-linearity is e!ective only for
a small fraction of the total mesh cycle.

To further establish the damping characteristics of friction-induced non-linearities, the
dynamic response is compared for LTV and NLTV systems. The pro"le error excitation e is
assumed to be zero in these plots. The initial state is de"ned by a stationary condition
(dQ "0) and a static de#ection based on the external mean load and time-averaged mesh
sti!ness. Figure 11 shows the dynamic response obtained by LTV analysis under
non-resonant conditions, whereas Figure 12 shows the results from NLTV analysis under
identical operating conditions. Clearly, the two responses are nearly the same, in both time
and frequency domains. In this condition, the friction acts primarily as an excitation and
hence does not demonstrate any di!erence between the two analyses.

Next, the contact ratio C is altered slightly and the damping ratio f is reduced to 0)001 in
order to force the system into one of its unstable regimes. As a result, the LTV system in
Figure 13 exhibits a divergent response for the dynamic transmission error, corresponding
to saddle-node bifurcation instability. Subsequently, the gear pair is analyzed using the
non-linear model of friction and the corresponding time-domain and frequency response is
shown in Figure 14. Clearly, the system now exhibits long-term stability. It may be noted
that the spectral ratios in Figures 13(b) and 14(b) are similar. On the contrary,
a period-doubling instability would show entirely di!erent spectra for the stable and
unstable cases, as seen previously in the LTV analysis (see Figure 5). These results indicate
that under certain circumstances, friction at the gear teeth may have a stabilizing e!ect on
the gear system. Needless to say, this conclusion is only valid given the scope of our
formulation where the clearance non-linearity has been ignored.



Figure 11. Dynamic response d(t) with LTV analysis, away from resonance conditions for f"0)05, k"0)1,
X"1490 rpm, C"1)532: (a) time-domain response; (b) frequency spectrum.

Figure 12. Dynamic response d(t) with NLTV analysis, away from resonance conditions for f"0)05, k"0)1,
X"1490 rpm, C"1)532: (a) time-domain response; (b) frequency spectrum; s, values from LTV analysis.
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7.2. LTV VERSUS NLTV SYSTEMS

This analysis is extended over a wider range of running conditions. The dynamic response
of the system is computed for several values of gear contact ratio C and angular speed X

p
,

such that the system passes through multiple regimes on instability. The peak-to-peak
transmission error is obtained for both the LTV and NLTV systems and their ratio is
de"ned on a decibel scale as ¸d"20 log

10
(c) where c"d

LTV
/d

NLTV
. This ratio is plotted in

Figure 15, wherein a value of zero implies that the two analyses yield identical results.
Conversely, a high value of the ratio indicates a smaller amplitude of response for the
NLTV gear system. Over almost the entire range studied here, a positive or zero value of
the ratio is obtained (¸d*0). Since these results were obtained using numerical integration,
we cannot "nd with absolute certainty all of the unstable zones. Nevertheless, in zones
where this ratio is very large, we can infer that the LTV system yields an unstable response
whereas the non-linearities could potentially provide a stable system.

Finally, this comparison is carried out for the whole range of frequencies, up to the
natural frequency of the system (at X

p
+13,400 rpm). Figure 16(a) shows the unstable zones

for the LTV system as functions of the contact ratio and operating speed of the input gear.
Here, super-harmonic as well as sub-harmonic resonances can be clearly seen as the shaded



Figure 13. Dynamic response d(t) with LTV analysis, near resonance conditions for f"0)001, k"0)1,
X"1490 rpm, C"1)473: (a) time-domain response; (b) frequency spectrum.

Figure 14. Dynamic response d(t) with NLTV analysis, away from resonance conditions for f"0)001, k"0)1,
X"1490 rpm, C"1)473: (a) time-domain response; (b) frequency spectrum.
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regions. The zones at sub-harmonics like u
0
+2u

n
/3 represent the period-doubling

bifurcation whereas super-harmonics of u
0

correspond to saddle-node bifurcation
instabilities [11]. These unstable zones tilt towards the right because as C is increased, the
time-averaged mesh sti!ness goes up according to the relationship in equation (21) and
hence the e!ective system natural frequency increases.

Figure 16(b) shows the contours of ratio of the magnitudes for LTV and NLTV cases
similar to Figure 15. The maximum in#uence of friction non-linearities is observed at the
primary resonance, i.e., for the zone with u

0
"u

n
. In accordance with the limitations of

numerical analyses, a value of c needs to be determined as the threshold of stability. For the
purpose of illustration, we have assumed that a value of c'102 distinguishes the stable and
unstable regions. Therefore, the inner two contours represent the zones where a stable
response has been achieved due to friction non-linearity. It is also clear from the "gure that
this is true both for the saddle-node bifurcation as well as the period-doubling instabilities.
Thus, this analysis establishes some essential di!erences in the dynamic characteristics of
sliding friction under LTV or NLTV considerations. It can be concluded that these
di!erences are signi"cant only near resonant conditions of the gear mesh. Consequently,
sliding friction at the gear teeth, just like the inherent damping in the system, could provide



Figure 15. Plot of ratio ¸d for the dynamic transmission error using LTV and NLTV analyses.

Figure 16. Stability plots over a wider frequency range, up to the natural frequency of the system. (a) contours of
constant magnitude for LTV model showing unstable zones; (b) ratio c of magnitude of d between LTV and NLTV
models. [, c"3; X, c"100; X, c"100, 000.
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one of the justi"cations for the absence of instabilities in most practical gearboxes, even
though many of the failures are still ill-understood.

8. CONCLUSION

In this article, a new gear dynamic model is proposed which incorporates non-linearities
induced by sliding friction. This model is compared with a linear time-varying system
formulation and their salient dynamic characteristics are discussed. For the analysis of an
LTV system, a multiterm harmonic balance scheme is developed with friction acting as an
external excitation. This method is applied to analyze the in#uence of individual parameters
as well as their dynamic interactions. Sub-harmonic terms are included in the solution and
using these, the period-doubling instabilities are predicted in the system.

When the NLTV system is modelled using the HBM, the nature of sliding non-linearity
leads to an extraordinarily large number of intractable equations and non-linear terms, and
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hence numerical simulations are applied for these. The in#uence of sliding friction on the
spectral composition of the dynamic response is studied. Both the tribological parameters
and the kinematic phasing between the pitch point and the tooth contact transition points
dictate the overall e!ect of sliding friction. Finally, the vibration damping characteristics of
friction are investigated, which show that friction is able to reduce the large oscillations at
certain resonant conditions. Thus, when compared with an LTV system, the regimes of
instability shrink for a non-linear system. However, for non-resonant conditions, both LTV
and NLTV systems yield identical results.

Many aspects of this study have potential for further research. A higher degree of freedom
model could conceivably bring out a more pronounced e!ect of friction, especially when the
system includes the translational dynamics in the sliding direction. It will also be of interest
to incorporate the backlash non-linearity and examine the in#uence of loss of contact on the
sliding characteristics. Although this article brings out the issue of stability, a detailed
analysis of the types of stabilities and their individual relationship with friction terms should
give a deeper insight into gear dynamics. More general cyclic variations of mesh sti!ness
can be considered to validate the model. Finally, it would be very desirable to design
precisely controlled experiments that can aid in identifying the phenomenon of friction as
well as the dynamic instabilities.
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APPENDIX A: NOMENCLATURE

a, b Fourier coe$cients for harmonic response
c, d Fourier coe$cients for sub-harmonic response
c damping coe$cient
F force
f
0

gear meshing frequency
J moment of inertia
K matrix with sti!ness and damping terms
k mesh sti!ness
¸
c

length of line of contact
¸d ratio of dynamic response using LTV and NLTV analyses
N normal load
n number of harmonic terms
R base circle radius
R

q
Compound surface roughness of mating parts

¹ torque
t time instant
< velocity
<
t

total rolling velocity
<
0

reference velocity for non-dimensionalization
a gear roll angle
d dynamic transmission error
e unloaded static transmission error
C pro"le contact ratio of gears
c ratio of peak-to-peak transmission error in LTV and NLTV systems
g axis along o!-line of action
g
0

dynamic viscosity of lubricant
k
0

material coe$cient of friction
k instantaneous coe$cient of friction
P number of teeth on the gears
h angle of rotation of gear or pinion
o radius of curvature of contacting surface
X mean angular speed
u excitation frequency
m location on line of contact
f damping ratio
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Subscripts

1, 2 number of tooth in contact
a, b, c time zone in gear mesh cycle
f friction
h, u harmonic and sub-harmonic respectively
i index of particular tooth in contact
m one mesh cycle
p, g pinion and gear respectively
s sliding

Abbreviations

LTV linear time varying
NLTV non-linear time varying
HBM harmonic balance method
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